<div data-elementor-type="wp-post" data-elementor-id="508" class="elementor elementor-508">
				<div class="elementor-element elementor-element-5c8f99fb e-flex e-con-boxed wpr-particle-no wpr-jarallax-no wpr-parallax-no wpr-sticky-section-no e-con e-parent" data-id="5c8f99fb" data-element_type="container">
					<div class="e-con-inner">
				<div class="elementor-element elementor-element-724bd969 elementor-widget elementor-widget-text-editor" data-id="724bd969" data-element_type="widget" data-widget_type="text-editor.default">
									
<p>Discover how John Clarke, Michel H. Devoret, and John M. Martinis won the 2025 Nobel Prize in Physics for unveiling macroscopic quantum tunnelling and energy quantisation in electric circuits. Explore its history, impact, and connection to quantum computing.</p>

<figure class="wp-block-image"><img class="wp-image-509" src="https://theearthcurrent.com/wp-content/uploads/2025/10/Screenshot-2025-10-07-210050.png" alt="" /></figure>

<p>Nobel Prize Physics 2025, macroscopic quantum tunnelling, energy quantisation in circuits, quantum physics on a chip</p>

<h2 class="wp-block-heading">ð§ 2025 Nobel Prize in Physics: When Quantum Mechanics Came Alive on a Chip</h2>

<p>The Royal Swedish Academy of Sciences has awarded the 2025 Nobel Prize in Physics to John Clarke (University of California, Berkeley, USA), Michel H. Devoret (Yale University and UC Santa Barbara, USA), and John M. Martinis (UC Santa Barbara, USA) for the “discovery of macroscopic quantum mechanical tunnelling and energy quantisation in an electric circuit.” Their groundbreaking experiments demonstrated that quantum mechanics-once thought to exist only at atomic or subatomic scales-can manifest in large-scale electrical circuits fabricated on a silicon chip. It’s quantum physics in action, right inside our everyday technology.<br /><a>Related Reading → What is Quantum Computing and How Does It Work?</a></p>

<h2 class="wp-block-heading">ðï¸ A Brief History: The Nobel Prize and Quantum Tunnelling</h2>

<p>The Nobel Prize in Physics has been awarded since 1901 to recognize the greatest contributions to understanding nature’s deepest laws. Over the decades, quantum physics has been a recurring theme-from Einstein’s photoelectric effect to Feynman’s quantum electrodynamics. Quantum tunnelling refers to the phenomenon where a particle passes through an energy barrier that classical physics says it shouldn’t be able to cross.</p>

<p><strong>ðï¸ History of the Nobel Prize in Physics (Selected Highlights):</strong></p>

<figure class="wp-block-table">
<table class="has-fixed-layout">
<thead>
<tr>
<th><strong>Year</strong></th>
<th><strong>Laureate(s)</strong></th>
<th><strong>Discovery / Contribution</strong></th>
<th><strong>Scientific Significance</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1901</strong></td>
<td>Wilhelm Conrad Röntgen</td>
<td>Discovery of X-rays</td>
<td>First Nobel in Physics; revolutionized medical imaging.</td>
</tr>
<tr>
<td><strong>1903</strong></td>
<td>Antoine Henri Becquerel, Pierre Curie, Marie Curie</td>
<td>Discovery of spontaneous radioactivity</td>
<td>Opened new fields in nuclear and atomic physics.</td>
</tr>
<tr>
<td><strong>1905</strong></td>
<td>Philipp Lenard</td>
<td>Work on cathode rays</td>
<td>Contributed to understanding atomic structure.</td>
</tr>
<tr>
<td><strong>1909</strong></td>
<td>Guglielmo Marconi, Karl Ferdinand Braun</td>
<td>Development of wireless telegraphy</td>
<td>Foundation for radio communication technology.</td>
</tr>
<tr>
<td><strong>1918</strong></td>
<td>Max Planck</td>
<td>Discovery of energy quanta</td>
<td>Laid the foundation of quantum theory.</td>
</tr>
<tr>
<td><strong>1921</strong></td>
<td>Albert Einstein</td>
<td>Discovery of the photoelectric effect</td>
<td>Confirmed quantum nature of light; led to quantum mechanics.</td>
</tr>
<tr>
<td><strong>1932</strong></td>
<td>Werner Heisenberg</td>
<td>Creation of quantum mechanics</td>
<td>Described atomic and subatomic particle behavior.</td>
</tr>
<tr>
<td><strong>1933</strong></td>
<td>Erwin Schrödinger, Paul Dirac</td>
<td>Wave and relativistic equations of quantum theory</td>
<td>Unified quantum mechanics and relativity principles.</td>
</tr>
<tr>
<td><strong>1945</strong></td>
<td>Wolfgang Pauli</td>
<td>Discovery of the Pauli exclusion principle</td>
<td>Explained atomic structure and matter stability.</td>
</tr>
<tr>
<td><strong>1956</strong></td>
<td>William Shockley, John Bardeen, Walter Brattain</td>
<td>Invention of the transistor</td>
<td>Laid foundation for modern electronics and computing.</td>
</tr>
<tr>
<td><strong>1965</strong></td>
<td>Richard Feynman, Julian Schwinger, Sin-Itiro Tomonaga</td>
<td>Quantum electrodynamics (QED)</td>
<td>Described electromagnetic interactions at quantum scale.</td>
</tr>
<tr>
<td><strong>1973</strong></td>
<td>Leo Esaki, Ivar Giaever, Brian Josephson</td>
<td>Tunnelling phenomena in semiconductors &; superconductors</td>
<td>Enabled superconducting devices and quantum circuits.</td>
</tr>
<tr>
<td><strong>1987</strong></td>
<td>J. Georg Bednorz, K. Alex Müller</td>
<td>Discovery of high-temperature superconductivity</td>
<td>Advanced materials science and quantum applications.</td>
</tr>
<tr>
<td><strong>2001</strong></td>
<td>Eric Cornell, Wolfgang Ketterle, Carl Wieman</td>
<td>Creation of Bose–Einstein condensate</td>
<td>Revealed new quantum state of matter.</td>
</tr>
<tr>
<td><strong>2016</strong></td>
<td>David J. Thouless, F. Duncan M. Haldane, J. Michael Kosterlitz</td>
<td>Topological phase transitions in condensed matter</td>
<td>Opened new frontier in topological physics.</td>
</tr>
<tr>
<td><strong>2018</strong></td>
<td>Arthur Ashkin, Gérard Mourou, Donna Strickland</td>
<td>Optical tweezers and ultrafast lasers</td>
<td>Enabled manipulation of microscopic particles and laser precision.</td>
</tr>
<tr>
<td><strong>2022</strong></td>
<td>Alain Aspect, John F. Clauser, Anton Zeilinger</td>
<td>Experiments on quantum entanglement</td>
<td>Strengthened quantum information science.</td>
</tr>
<tr>
<td><strong>2023</strong></td>
<td>Pierre Agostini, Ferenc Krausz, Anne L’Huillier</td>
<td>Attosecond light pulse generation</td>
<td>Allowed observation of electron motion in real time.</td>
</tr>
<tr>
<td><strong>2025</strong></td>
<td>John Clarke, Michel H. Devoret, John M. Martinis</td>
<td>Macroscopic quantum tunnelling and energy quantisation in electric circuits</td>
<td>Brought quantum mechanics to chip-scale &#8211; foundation for quantum computing.</td>
</tr>
</tbody>
</table>
</figure>

<p><br /><a>Also read → The History of Quantum Tunnelling and Its Applications</a></p>

<h2 class="wp-block-heading">â¡ The Discovery Explained: From Microscopic to Macroscopic Quantum Physics</h2>

<h3 class="wp-block-heading">1. Quantum Effects at a Larger Scale</h3>

<p>Traditionally, quantum effects are confined to microscopic particles like electrons or atoms. But these researchers demonstrated macroscopic quantum tunnelling in superconducting electrical circuits, where billions of electrons behave as one coherent quantum system.</p>

<h3 class="wp-block-heading">2. Energy Quantisation in Electric Circuits</h3>

<p>Their experiments revealed that such circuits don’t have continuous energy levels-they exhibit quantised energy states, discrete “steps” of energy similar to the atomic levels in Bohr’s model.</p>

<h3 class="wp-block-heading">3. Superconducting Circuits and Josephson Junctions</h3>

<p>The key device behind this discovery is the Josephson junction-two superconductors separated by a thin insulating barrier. When cooled to near absolute zero, the entire circuit behaves quantum mechanically, allowing macroscopic tunnelling of current. This principle is the foundation of superconducting qubits used in modern quantum computers.</p>

<h3 class="wp-block-heading">4. Foundation for Modern Quantum Technologies</h3>

<p>These breakthroughs laid the foundation for technologies such as quantum computers, ultra-sensitive quantum sensors, and secure quantum communication systems.<br /><a>Related post → Understanding Superconducting Qubits in Quantum Computing</a></p>

<h2 class="wp-block-heading">ð Why This Discovery is a Game Changer</h2>

<p>This Nobel-winning work marks a turning point in both physics and engineering. It blurs the line between classical circuits and quantum systems, proving that quantum effects are not limited to the microscopic realm. They can occur in devices we can design, build, and observe directly. This discovery provides the scientific groundwork for quantum processors, quantum sensors, and control systems that will drive the next generation of computing. As Nobel Committee member Eva Olsson summarized, this is “quantum mechanics in action-on a chip.”<br /><a>Further reading → How Quantum Mechanics Shapes Modern Electronics</a></p>

<h2 class="wp-block-heading">ð Internal Linking</h2>

<ul class="wp-block-list">
<li>“macroscopic quantum tunnelling in circuits,” “energy quantisation on a chip,” and “Nobel Prize Physics 2025 discoveries.”</li>

<li>related posts:
<ul class="wp-block-list">
<li><a>History of the Nobel Prize in Physics</a></li>

<li><a>Josephson Effect Explained Simply</a></li>

<li><a>Basics of Quantum Computing</a></li>

<li><a>What is superconductivity?</a></li>
</ul>
</li>
</ul>

<p>The 2025 Nobel Prize in Physics reminds us that quantum mechanics isn’t just theoretical-it’s something we can now control and witness on a chip. John Clarke, Michel Devoret, and John Martinis have opened a new chapter in physics, showing that the same mysterious laws governing atoms also govern man-made circuits. Their discovery stands at the heart of the quantum technology revolution, bridging the microscopic and macroscopic worlds.</p>

<h2 class="wp-block-heading">ð References</h2>

<ol class="wp-block-list">
<li><em>Scientific American</em>: <a href="https://www.scientificamerican.com/article/2025-nobel-prize-in-physics-goes-to-researchers-who-brought-quantum/?utm_source=chatgpt.com">2025 Nobel Prize in Physics Goes to Researchers Who Brought Quantum Mechanics to a Chip</a></li>

<li><em>Physics World</em>: <a href="https://physicsworld.com/a/john-clarke-michel-devoret-and-john-martinis-win-the-2025-nobel-prize-for-physics/?utm_source=chatgpt.com">John Clarke, Michel Devoret and John Martinis Win the 2025 Nobel Prize for Physics</a></li>

<li><em>Reuters</em>: <a href="https://www.reuters.com/science/clarke-devoret-martinis-win-2025-nobel-prize-physics-2025-10-07/?utm_source=chatgpt.com">Nobel Physics Prize 2025 – Pioneers of Quantum Mechanics on a Chip</a></li>

<li><em>Washington Post</em>: <a href="https://www.washingtonpost.com/science/2025/10/07/nobel-prize-physics-quantum-tunneling/?utm_source=chatgpt.com">Nobel Prize in Physics Awarded to Scientists Showing Quantum Mechanics on a Macro Scale</a></li>

<li><em>NobelPrize.org</em>: <a href="https://www.nobelprize.org/prizes/lists/all-nobel-prizes-in-physics/?utm_source=chatgpt.com">All Nobel Prizes in Physics</a></li>

<li><em>Wikipedia</em>: <a href="https://en.wikipedia.org/wiki/Macroscopic_quantum_phenomena?utm_source=chatgpt.com">Macroscopic Quantum Phenomena</a>, <a href="https://en.wikipedia.org/wiki/Josephson_effect?utm_source=chatgpt.com">Josephson Effect</a></li>

<li><a href="https://www.nobelprize.org/prizes/physics/2025/press-release/">https://www.nobelprize.org/prizes/physics/2025/press-release/</a></li>
</ol>

<p> </p>
								</div>
					</div>
				</div>
				</div>
		
washington flooding 📘 Table of Contents Washington Flooding: Overview What Triggered the WA Floods Skagit…
starlink india satellite internet 📑 Table of Contents Introduction What Is Starlink India? Starlink India…
google ai data deletion 🧭 TABLE OF CONTENTS Introduction What Is the Google AI Data…
IndiGo flight 📌 TABLE OF CONTENTS Introduction What Is Causing the IndiGo Chaos IndiGo Flight…
real betis vs barcelona real betis vs barcelona LaLiga EA Sports Preview Betis Barcelona Analysis,…
Mission Impossible Final Mission Impossible The Final Reckoning Arrives on OTT in India When and…